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Abstract. In this paper, we solve a general problem of optimizing a portfolio in a futures markets frame-
work, extending the previous work of Galluccio et al. [Physica A 259, 449 (1998)]. We allow for long
buying/short selling of a relatively large number of assets, assuming a fixed level of margin requirement.
Because of non-linearity in the constraint, we derive a multiple equilibrium solution, in a size exponential
respect to the number of assets. That means that we can not obtain the unique efficiency frontier, but
many of them and each one is related to different levels of risk. Such a problem is analogous to that of
finding the ground state in long-ranged Ising spin glass with external field. In order to get the best portfolio
(i.e. that is along the best efficiency frontier), we have to implement a two-step procedure, performing the
exhaustive enumeration of all local minima. We develop a concrete application, where the different part of
the proposed solution are computed.

PACS. 89.65.Gh Economics, business, and financial markets

1 Introduction

Portfolio theory is a basic pillar in economic analysis. It
was originally proposed by Markovitz [1] during the 50’s.
The approach was that the return of any financial ac-
tivity is described by a random variable, whose expected
mean (measure for reward) and variance (interpreted as
volatility) are assumed to be known from its historical
past. The selection of a particular portfolio is based on the
mean-variance principle: i.e., if two portfolios are given,
and the expected return of the first portfolio is higher
than the second one, or the variance of the first portfolio
is lower than the second one, we say that the first port-
folio dominates the second; the latter being outside the
decision field of a rational investor. Portfolio selection al-
lows us to find the set of efficient portfolios, i.e. those
portfolios not dominated by anything else. The rational
investor eventually chooses among these efficient portfo-
lios, in a subjective manner, according to his preferences
towards risk. Much criticism, over the years, has been ad-
dressed to Markovitz’s model. For instance, the choice of
variance as a signal of risk has been criticized on logi-
cal grounds: the model requires a quadratic utility func-
tion and set of returns that must be normally distributed,
but empirical analyses of financial price-data show that
short time variations of the price of different assets devi-
ate from the Gaussian distribution [2–4], which would be
expected if agents were trading independently. Criticism
has also been made of other aspects of the original model.
In spite of this, the Markowitz approach has been very
successful, because of its ability to grasp the hard core of
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the problem of how to allocate wealth among alternative
assets. Extended versions of the model (for instance, in
order to increase the number and types of assets consid-
ered; or to reduce computations for the estimated matrix
of variance/covariances among returns), have almost con-
tinuously been introduced, and today various and updated
versions of the original model are widely used by financial
practitioners (for instance: [5,6]). Quoting from a success-
ful fund management story1

Even if point estimates of risk and return variables
fail to represent reality fairly, insofar as inputs stem
from well-grounded interrelationships, the mean-
variance optimization process produces valuable in-
sight into efficient portfolio alternatives.

A very interesting extension of the original model to the
“short sales” case is due to the contribution of Lint-
ner [7,8]. In fact, in this paper we move in the same di-
rection extending and generalizing the traditional analysis
(short-selling included), by considering the case of futures
markets, where the short sale problem is regulated through
the mechanism of margin accounts. Specifically – regard-
ing the current state of the art in portfolio selection – the
model for futures markets allows for:

– long-buying/short selling activities in equities,
– leveraging on margin accounts,
– a set of a (relatively) large number of assets to be

prospected.
1 David Swensen, Pioneering Portfolio Management: An

Unconventional Approach to Institutional Investment (Free
Press, 1999).
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The main result we aim to discuss here is that the portfo-
lio optimization problem in futures markets naturally be-
longs to the realm of “complex” problems. In particular,
a very large number of (quasi) equilibrium solutions coex-
ists in the model and any procedure developed to reach a
decision regarding the structure of the portfolio must face
this problem. To be a little bit more precise, if we have N
assets available to the investor, for a fixed expected re-
turn R, the number n(N, R) of risk local minima grows
exponentially in the number of assets, i.e.:

n(N, R) ∼ eω(R)N

where ω(R) is a positive number depending on the port-
folio return. Since we have this multiple equilibrium so-
lution (however let us notice that the equilibria are not
equivalent among themselves with respect to the level of
risk), we have to implement a second step in the solution
procedure in order to get the global equilibrium. This con-
clusion is a direct consequence of the application of La-
grange optimization and the non-linear constraint on the
total wealth in futures markets. The issue of non-unique
equilibrium is a well-known chapter of economic analysis,
particularly in models with money, increasing returns and
imperfect competition [9] and a new line of research on
equilibrium beliefs is being developed. However it should
be emphasized that, in this paper, the issue of multiple
equilibrium solutions is discussed in a quite different set-
ting. The underlying idea is that the selection of a unique
optimum portfolio obtained from portfolio optimization
in its current form [5,6], works well only if we introduce
drastic and perhaps unrealistic simplification. Enlarging
the picture to a certain extent, by relaxing the most re-
strictive assumptions in line with the practical experience
of fund management, when calculating the solution for
the optimum portfolio, we reach rapidly the threshold of
a so-called NP problem, an area of research currently still
largely ignored in economic computation [10,11]. We will
deal in this paper with the complexity of the problem for
a concrete case of a portfolio made up of 16 risky assets.
We will explicitly show where complexity does arise and
we will suggest the necessity of using algorithms typical of
the realm of other optimization problems (like “simulated
annealing” [12]).

Our analysis is built on a seminal idea by Galluccio
et al. [13], who have re-stated the problem of a solution to
the portfolio optimization problem in futures markets in
terms of a spin glass problem (see also [14–16]). Motivated
initially by the desire to understand the strange behaviour
of certain magnetic alloys, the theory of spin glasses has
provided a powerful paradigm for complex systems having
competition and conflicting internal constraints. This is
due to the fact that techniques developed for spin glasses
have been successfully applied to other fields, like opti-
mization problems, biology, social sciences [17,18]. In ref-
erence [13], Galluccio et al. showed that the problem of
portfolio selection with short-selling, regulated through
the mechanism of margin accounts, is basically equivalent
to that of finding the ground state of a long-ranged Ising
spin glass. The correlation matrix between assets return

is related to the coupling matrix of the spin glass. Argu-
ing that correlation matrix can be regarded as a generic
realization of a matrix taken from an appropriate random
ensemble, they derived the exponential increase of opti-
mal solutions with the number of assets from the well-
known increase of 1-flip-stable states with the number of
spins [19,20]. Here we put forward their analysis, by ex-
plicitly constructing the efficient frontier of the portfolio.
To achieve this aim, when performing the minimization
of risk under the non-linear constraint, we need to fix the
average return of the portfolio. In the spin glass language
this is the analogous to imposing an external field [21].

The rest of the paper goes as follows. In the next Sec-
tion we introduce the model of portfolio optimization in
futures markets and we explain the non-linear constraint
that is involved. A first analysis of the portfolio variance
in the spirit of reference [13] is also presented, showing
the complexity of the problem, compared to the classical
Markowitz problem, where the wealth constraint is linear
and one ends up always with a unique solutions. In Sec-
tion 3 we generalize the optimization procedure by con-
sidering a fixed portfolio return. The general procedure
and analytical calculation needed to construct the effi-
cient frontier are obtained and similarities with the spin
glass problem are enlightened. We deal with a concrete
example in Section 4, considering a portfolio of 16 assets
traded on the Nasdaq Market and solving the portfolio
problem by means of computer calculations. We show the
multiple equilibrium solutions and we discuss the distri-
bution of local minimum risks. Then, we calculate the effi-
cient frontier and discuss a related averaged frontier. This
last curve, as discussed in the paper, represents the deci-
sion that an investor will mostly likely take by searching
the optimal solution with standard methods of combina-
torial optimization. We will also reconstruct and discuss
the frontier corresponding to the “worst of the best de-
cisions”, namely the local minimum with higher risk (at
fixed return). As we will see, the risk function has an ex-
ponential number of local minima and one needs to select
by hand the lowest one. Moreover, there is the possibility
that portfolios completely different among themselves cor-
respond almost to the same value of the risk. Finally, in
Section 5 some remarks on variances/covariances matrix
are presented and summarized Conclusions will follow as
usual.

2 The model

In this section, we present a model of portfolio opti-
mization, where some traditional assumptions are relaxed.
Specifically, in order to allow for the maximum flexibility
in the model, a hedge-fund as rational investor agent is
considered. Let us start from the standard definitions. We
consider a portfolio P of N risky assets indexed by the
subscript i which takes values i = 1, . . . , N . The variance
(i.e. risk) of the portfolio is

σ2
P =

N∑
i,j=1

Cijpipj = pT Cp (1)
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and the mean (i.e. expected average return)

RP =
N∑

i=1

piri = pT r (2)

where p = (p1, p2, . . . , pN) are the shares of a given total
wealth to be invested, and the external parameters are

ri – the expected return on asset i,
Cij – the matrix of variances (i = j) and covariances

(i �= j).
and we have introduced the usual vectorial notation with
T to denote the transposed.

The aim of the optimization is to find the most efficient
investment strategy, i.e. to evaluate proportions p of the
total wealth W that minimize the risk σ2

P , for a given re-
turn RP (or vice versa shares p that maximize the return
RP for a given level of risk σ2

P)). In other words, we would
like to calculate the efficient frontier, that represents the
relationship between the risk of the portfolio and the ex-
pected return of the portfolio itself having the best utility
for the investor. Knowing the efficient frontier, once a par-
ticular expected rate of return has been identified, we can
determine the correspondent efficient portfolio; it is such
that its variance (or riskiness) is a minimum. Therefore,
once one of the two (either the risk or the return) has been
chosen by the investor, the other variable is derived as a
consequence.

Since long-buying and short-selling are allowed, and
leveraging on margin accounts works, then the budget con-
straint is

N∑
i=1

Γ | pi |= W (3)

where Γ is the (fixed) margin constraint and pi > 0 or
pi < 0, depending on the sign of the contract (buy or sell
respectively). The margin is assumed fixed for all opera-
tions, and it does not change over time according to price
variations of the underlying assets. Moreover, the prob-
lem of issuing futures on behalf of the financial institution
is not considered. Without loss of generality we can set
W/Γ = 1, so that, introducing the vector s whose compo-
nents are si = sign(pi), the budget constrain becomes:

N∑
i=1

| pi |= pT s = 1 (4)

where sign denotes the sign function, sign(x) = 1 if x > 0
and sign(x) = −1 if x < 0.

2.1 “Complexity” of the model

Let us consider the problem of finding the minimum of
the variance subjected to the only budget constraint (no
fixed average portfolio return). In other words we want
to minimize the portfolio variance equation (1) with the
non-linear constrain given by equation (4). We introduce
a Lagrangian function with one Lagrange multiplier µ:

L(p, µ) = pT Cp − µ(pT s − 1). (5)

Differentiating with respect to the N +1 unknowns p and
µ we obtain the following equations for the extreme points

p =
1
2
µC−1s (6)

pT s = 1 (7)

where C−1 is the inverse of the correlations matrix.
Inserting equation (6) in equation (7) we can solve for µ
and then for p

µ =
2

sT C−1s
(8)

p =
1

sT C−1s
C−1s. (9)

Applying the sign function to both sides of the last equa-
tion, we obtain

s = sign(C−1s) (10)

where we have used the fact that, since C is a positive def-
inite matrix, the same is true for C−1, so that sT C−1s > 0
for every value of s.

The original problem has thus been mapped in finding
the solution of equation (10): once the si that solve this
equation are known, the shares pi can be calculated using
equation (9), while the portfolio variance is given by

σ2
P =

1
sT C−1s

· (11)

But solving equation (10) is a very tough task. It is exactly
the same equation that appears in spin glass theory when
one looks for 1-flip stable configurations at zero tempera-
ture. It is well-known [19,20] that equation (10) admits for
a generic random matrix C−1 an exponential number of
solution. Moreover these solutions are “chaotic”, i.e. they
are completely different one from another and they com-
pletely change varying the number of degree of freedom.
In our case the matrix C−1 is not a priori random but
it is constructed from the historical dates. Nevertheless,
since historical prices/returns movements are generated
by market fluctuations, the correlation matrix C (and so
its inverse C−1) can be seen as a generic realization of
some specific random matrix ensemble (see Sect. 5). In
this way we can borrow the results from physics and di-
rectly draw some first conclusions [13]:

– At variance with the classical Markowitz portfolio
problem, where we always find a minimization equa-
tion that admits a unique solution, in the present case
of futures markets we have an exponential number of
portfolios for which the risk function has a (local) min-
imum. So we face the embarrassment of which solution
to choose and we need to calculate by hand the portfo-
lio variance on each solution to find the true minimum.

– We can have very different portfolios corresponding to
(local) risk minima having almost the same risk value.

– Adding one asset to the portfolio radically changes the
shape of efficient investments.
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3 Constructing the efficient frontier

In the previous section we have shown how the complexity
of the problem naturally arises in the minimization pro-
cedure for the case of the global minimum of the portfolio
risk. This says nothing about the efficient frontier (even if
it shows the instability of rational investment decisions).
To completely solve the problem, we have to repeat the
minimization of the variance fixing the average return to
the value R with an extra Lagrange multiplier ν.

Thus the problem is now to minimize equation (1) sub-
ject to equation (4) and to the additional constraint

RP = pT r = R. (12)

We introduce the Lagrangian function

L(p, µ) = pT Cp − µ(pT s − 1) − ν(pT r − R). (13)

Differentiating with respect to the N + 2 unknowns p, µ
and ν we obtain

p =
1
2
µC−1s +

1
2
νC−1r

pT s = 1
pT r = R. (14)

Inserting the first equation in the second and the third,
we can solve for µ and ν, and then for p. Defining

α = sT C−1s

β = rT C−1s

γ = rT C−1r (15)

we obtain the following expressions:

µ = 2
γ − Rβ

αγ − β2

ν = 2
Rα − β

αγ − β2

p =
γ − Rβ

αγ − β2
C−1s +

Rα − β

αγ − β2
C−1r. (16)

Applying the sign function to both sides of the last equa-
tion and remembering that s = sign(p) by definition, we
finally obtain

s = sign
(

γ − Rβ

αγ − β2
C−1s +

Rα − β

αγ − β2
C−1r

)
· (17)

This is the basic equation that substitute equation (10) in
the case of a fixed average return R. If we now identify the

γ − Rβ

αγ − β2
C−1 ⇐⇒ J

Rα − β

αγ − β2
C−1r ⇐⇒ h

we establish a perfect analogy between the equation to be
solved for the portfolio optimization problem in futures

markets and the one for the spin glass problem of finding
the local energy minima at zero temperature in presence of
an external field h. Note that in equation (17) the coupling
matrix depends on the spin configuration itself.

The general procedure for tracing the N -stocks effi-
cient frontier in the case of futures markets thus can be
summarized as follows:

1. Fix a certain value of the average expected portfolio
return R.

2. For this return R solve the system of N equations (17)
for the vector s = (s1, s2, . . . , sN ). In general the num-
ber of solutions n will be exponential in number of as-
sets N : n ∼ eωN , where the exponential rate ω = ω(R)
depends on the fixed return R.

3. Calculate the value of the proportions investment
p = (p1, p2, . . . , pN) corresponding to each solution
of step 2 through formula (16) and then the associ-
ated risk. Select the lowest value of the risk and the
corresponding optimum portfolio investment.

4. Increase the return R by a certain (constant) amount
and repeat the entire procedure from step 2 through 4.

4 A worked example

In this section we explicitly treat an example with real
data: we demonstrate the “complexity” of our problem
and we calculate the efficient frontier by means of com-
puter calculations.

4.1 Data

We considered the case of a portfolio consisting of N = 16
risky assets. These risky assets are some common stocks
traded on the Nasdaq, in the period October 1, 1998 –
November 13, 2000. A historical record of daily prices
of these stocks for the T = 553 trading days of the pe-
riod was used to estimate the relevant parameters – the
mean return ri and the variance/covariance matrix Cij .
The data source is DataStream. Calling x(i, k) the price
of the ith asset (where i = 1, . . . , N) at the kth day (where
k = 1, . . . , T ), the daily rates of return are:

r(i, k) =
x(i, k + 1) − x(i, k)

x(i, k)
(18)

while the formula used to estimate average returns and
covariances are:

ri =
1

T − 1

T−1∑
k=1

r(i, k) (19)

Cij =
1

T − 1

T−1∑
k=1

[r(i, k) − ri] [r(j, k) − rj ] . (20)

The estimated mean returns are given in Table 1,
which also lists the stocks by name, while the vari-
ance/covariance matrix is split in Tables 2 and 3.



L. Bongini et al.: Portfolio optimization with short-selling and spin-glass 267

Table 2. Variance/covariance matrix.

ADO AMA AME AOL APP BRO CIS CMG

ADO 0.0017655 0.0006738 0.0005875 0.0004569 0.0010777 0.0007906 0.0006333 0.0009492

AMA 0.0006738 0.0039831 0.0015211 0.0014186 0.0009082 0.0013937 0.0008632 0.0025806

AME 0.0005875 0.0015211 0.0059604 0.0014733 0.0009082 0.0013879 0.0007159 0.0021351

AOL 0.0004569 0.0014186 0.0014733 0.0018082 0.0006482 0.0010780 0.0006245 0.0017036

APP 0.0010777 0.0009082 0.0009082 0.0006482 0.0038179 0.0016104 0.0011169 0.0017814

BRO 0.0007906 0.0013937 0.0013879 0.0010780 0.0016104 0.0052910 0.0008336 0.0020747

CIS 0.0006333 0.0008632 0.0007159 0.0006245 0.0011169 0.0008336 0.0011323 0.0011854

CMG 0.0009492 0.0025806 0.0021351 0.0017036 0.0017814 0.0020747 0.0011854 0.0051837

DEL 0.0004815 0.0006627 0.0006693 0.0006179 0.0006952 0.0006867 0.0007166 0.0011147

DOU 0.0006174 0.0019525 0.0022296 0.0014429 0.0013858 0.0020133 0.0007361 0.0029053

EBA 0.0007485 0.0022906 0.0016129 0.0013104 0.0012851 0.0017050 0.0009150 0.0025681

INK 0.0006859 0.0019766 0.0015506 0.0012455 0.0013270 0.0020950 0.0009573 0.0026140

INT 0.0005465 0.0006466 0.0005004 0.0005156 0.0009470 0.0006798 0.0006638 0.0009792

JDS 0.0007854 0.0008836 0.0009315 0.0007894 0.0016879 0.0013783 0.0010121 0.0015445

MIC 0.0003891 0.0005764 0.0004947 0.0004240 0.0005583 0.0006681 0.0004818 0.0007499

ORA 0.0007064 0.0008636 0.0007249 0.0005809 0.0011963 0.0009879 0.0007990 0.0012780

Table 1. Rate of return.

Name Symbol Return
1 Adobe ADO 0.004818
2 Amazon AMA 0.002838
3 Ameritrade AME 0.005522
4 Aol AOL 0.003374
5 Appmc APP 0.008313
6 Broadvis BRO 0.008397
7 Cisco CIS 0.002844
8 Cmgi CMG 0.004129
9 Dell DEL 0.000263

10 Doubleclick DOU 0.004788
11 Ebay EBA 0.005765
12 Inktomy INK 0.004144
13 Intel INT 0.001683
14 Jdsuni JDS 0.005999
15 Microsoft MIC 0.000843
16 Oracle ORA 0.004045
** Nasdaq Index NAS 0.001362

4.2 Multiple solutions

First of all we analyzed the whole set of possible choices
that one obtains for a fixed value of the return on the
portfolio composed by N = 16 assets. We chose to fix the
portfolio return to the value of the average daily Nasdaq
index return in the period we considered: R = RNAS =
0.0014 (i.e. 0.14%). Applying the solving technique de-
scribed in the previous Section, we found the solutions
ŝ = (ŝ1, ŝ2, . . . , ŝN ) of the equation (17) doing an ex-
haustive enumeration of all the 2N possible values of the
N -dimensional vector s. We found 6675 ŝ(j) vectors that
satisfy equation (17). From them we calculate the corre-
sponding proportions p̂(j) using equation (16) and the risk
values σ̂(j) using equation (1). Here the index j labels all

the local risk minima, j = 1, 2, . . . , 6675. The risk ranges
between σ̂MIN ≈ 0.0090 and σ̂MAX ≈ 0.0162 and has an
averaged risk σ̂AVE ≈ 0.0100, where the averaged value is
obviously defined as

σ̂AVE =
1

6675

6675∑
j=1

σ̂(j).

We show how the risk values are distributed in Figure 1,
where we plot their probability density function, i.e. the
histogram normalized to have area 1. We see that most
of the risk local minima have a risk value higher than the
global risk minimum σ̂MIN .

It is important to remark that the local minima which
correspond to the maximum of the distribution shown in
Figure 1 are in fact the solutions that one would obtain
with very “high probability”. To be more precise, if one
considers portfolios of some bigger dimension, just say
100 assets, it would be impossible to compute exactly all
the local minimum and instead one should rely on other
methods. For example (but not only) one could implement
an algorithm developed in the realm of spin glass theory,
aimed to freeze spin glass systems down to zero temper-
ature in order to reach the real minimum (ground state).
This rich class of algorithms can be roughly speaking ad-
dressed as simulated annealing techniques [12,17]. If one
tries to implement these algorithms then it would be al-
most impossible to end up on the efficient frontier, instead
one would almost surely converge to a portfolio solution
corresponding to the average risk (see also Sect. 4.4).

Moreover we observe that the proportions p̂ can be
very different among themselves and from p̂MIN . This is
shown in Table 4 where are reported the portfolio pMIN

(first column) corresponding to σ̂MIN , the portfolio p̂MAX

(last column) corresponding to σ̂MAX and some portfolios
p̂ (middle columns) having a risk value around σ̂AVE . From
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Table 3. Variance/covariance matrix (Continued).

DEL DOU EBA INK INT JDS MIC ORA

ADO 0.0004815 0.0006174 0.0007485 0.0006859 0.0005465 0.0007854 0.0003891 0.0007064

AMA 0.0006627 0.0019525 0.0022906 0.0019766 0.0006466 0.0008836 0.0005764 0.0008636

AME 0.0006693 0.0022296 0.0016129 0.0015506 0.0005004 0.0009315 0.0004947 0.0007249

AOL 0.0006179 0.0014429 0.0013104 0.0012455 0.0005156 0.0007894 0.0004240 0.0005809

APP 0.0006952 0.0013858 0.0012851 0.0013270 0.0009470 0.0016879 0.0005583 0.0011963

BRO 0.0006867 0.0020133 0.0017050 0.0020950 0.0006798 0.0013783 0.0006681 0.0009879

CIS 0.0007166 0.0007361 0.0009150 0.0009573 0.0006638 0.0010121 0.0004818 0.0007990

CMG 0.0011147 0.0029053 0.0025681 0.0026140 0.0009792 0.0015445 0.0007499 0.0012780

DEL 0.0014036 0.0007637 0.0008658 0.0008183 0.0007496 0.0006910 0.0005324 0.0005532

DOU 0.0007637 0.0057720 0.0018463 0.0020844 0.0006473 0.0009491 0.0006221 0.0006542

EBA 0.0008658 0.0018463 0.0050324 0.0023282 0.0006089 0.0010614 0.0005742 0.0008820

INK 0.0008183 0.0020844 0.0023282 0.0046071 0.0007030 0.0012190 0.0005463 0.0009930

INT 0.0007496 0.0006473 0.0006089 0.0007030 0.0011612 0.0008158 0.0004691 0.0006545

JDS 0.0006910 0.0009491 0.0010614 0.0012190 0.0008158 0.0025830 0.0005088 0.0010459

MIC 0.0005324 0.0006221 0.0005742 0.0005463 0.0004691 0.0005088 0.0008008 0.0004617

ORA 0.0005532 0.0006542 0.0008820 0.0009930 0.0006545 0.0010459 0.0004617 0.0019352

Table 4. Some portfolios corresponding to fixed return R = RNAS = 0.0014. The first column is the “best” portfolio corre-
sponding to the global risk minimum σ̂MIN ≈ 0.0090. The last column is the “worst” portfolio corresponding to the highest of
the local risk minima σ̂MAX ≈ 0.0162. In the middle columns there are some portfolios having risk around the average risk value
σ̂AVE ≈ 0.0100.

Risk 0.0090 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0162

ADO 0.0630 −0.0070 0.0780 0.0890 0.1070 0.0990 0.1100 0.0720

AMA −0.0460 −0.0520 −0.0390 −0.0260 −0.0320 −0.0380 −0.0080 0.0250

AME 0.0150 0.0210 0.0330 −0.0020 −0.0160 0.0170 0.0330 0.0310

AOL 0.0820 0.0950 −0.0280 −0.0110 0.1480 0.0900 −0.0180 0.1250

APP 0.0320 0.0600 0.0380 0.0480 0.0660 0.0800 0.0720 0.0280

BRO 0.0390 0.0340 0.0340 0.0260 0.0360 0.0350 0.0410 0.0550

CIS 0.1230 −0.1610 −0.1770 −0.1570 −0.1280 −0.1720 −0.1460 0.0670

CMG −0.0450 0.0030 0.0170 −0.0390 −0.0330 0.0020 −0.0440 0.0120

DEL −0.1380 −0.1600 −0.1520 −0.0800 −0.0390 0.0410 0.1070 0.0000

DOU 0.0220 −0.0230 −0.0170 0.0320 −0.0150 −0.0280 −0.0100 −0.1100

EBA 0.0410 0.0490 0.0520 0.0510 0.0460 0.0320 0.0340 0.0420

INK −0.0300 −0.0320 −0.0290 −0.0250 −0.0280 −0.0300 0.0180 −0.1640

INT 0.0890 0.0970 0.1010 −0.1090 −0.0760 −0.1470 −0.1140 0.0560

JDS −0.0440 0.0580 0.0630 0.0870 0.0860 0.0820 0.0930 0.0100

MIC −0.1490 0.0900 0.0950 0.1400 −0.1080 0.0800 −0.1360 0.1720

ORA 0.0420 0.0570 0.0470 0.0760 −0.0370 −0.0260 −0.0170 0.0300

a practical point of view, this quasi-degeneracy of the risk
value with corresponding proportions p̂ very far from each
other is the most interesting finding of this paper. In order
to illustrate better this point, we use a very important and
not trivial object in spin glass theory, the overlap distribu-
tion. Let us denote the vector sign of the global minimum
solution s̄ = {s̄1, . . . , s̄N} and by ŝ = {ŝ1, . . . , ŝN} an-
other generic local minimum solution (for simplicity, we
consider only the sign of the proportions si = sign(pi),
but the same reasoning can be extended to the propor-

tions themselves). A simple number, which describe how
different these two solutions are, can be defined basically
by counting how many sj’s one must flip in order to go
from one configuration to the other. This information is
contained in the integer number m(s̄, ŝ) defined as:

m(s̄, ŝ) =
1
2

(
N −

N∑
k=1

s̄kŝk

)
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Fig. 1. Histogram of the local risk minima. The number of
assets is N = 16 and the fixed portfolio return is the Nas-
daq return R = RNAS = 0.0014. PDF stands for Probability
Density Function.

and it ranges from 0 (identical sign vectors) to N (opposite
sign vectors).

In the top side of Figure 2 we plot the probability dis-
tribution function of the numbers mj ’s, obtained by mea-
suring the number of different signs between any single
local minimum and the global solution: mj = m(s̄, ŝ(j)),
where ŝ(j) runs over all possible 6675 solutions. In particu-
lar, this histogram show clearly that most of the solutions
are in turn very different from the one we would like to
calculate a priori, i.e. s̄.

Actually, a little bit more than this can be said. In
general two different local solutions might have almost
the same risk level but in a strategic-economic context
they can be totally different. This is shown in the bottom
side of Figure 2, where the histogram of the overlaps be-
tween all possible solutions is shown. Summarizing, a mul-
tiple choice is available to the investor and an irreducible
component of arbitrariness is present in the final decision.
Moreover, it is likely that traditional method for recon-
structing the minimizing solution will lead the investor to
be “trapped” into a quite different local minimum.

4.3 Exponential growth of solutions in the number
of assets

The impossibility of taking a rational decision described
in the previous paragraph gets even worse if we consider
the dependence of the number of solutions on the num-
ber of assets. We performed numerical experiments vary-
ing N from 5 to 16 keeping the average return R fixed
to RNAS. For each value we calculate the number of lo-
cal risk minima n(N), i.e. the number of solutions of
equation (17). As it is clear from Figure 3 this number
grows exponentially with the number of assets (note the
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Fig. 2. Top: the distribution of the overlap between the con-
figuration s̄ corresponding to the risk global minimum and the
other configurations ŝ(j) corresponding to the risk local min-
ima. Bottom: the distribution of the overlap between all the
configuration ŝ(j) (including s̄) corresponding to the risk local
minima.

lin-log scale in the graph). The best numerical fit yields
n(N) ∼ exp(0.69N). We note that essentially the same
value nNY (N) ∼ exp(0.68N) has been found in refer-
ence [13] for the case of 20 assets of the New York Stock
Exchange with no fixed portfolio return.

This exponential growth of the number of risk local
minima with the number of assets is the exact analog
of the exponential growth of the number of local energy
minima typical of spin glasses [19,20] From the economic
point of view, the consequence of this growth is that the
arbitrariness degree enlightened above gets even bigger by
increasing the portfolio dimension. Moreover we have ver-
ified (we do not report data for the sake of space) that
the multiple solutions have a “chaoticity” property, in the
sense that a small change of the correlation matrix C,
or the addition of an extra asset, completely changes the
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Fig. 3. The number of local risk minima versus the number
of assets N . The fixed average return is the Nasdaq return
RNAS = 0.0014. The solid line is the best numerical fit n(N) ∼
exp(0.69N).
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Fig. 4. The number of local risk minima versus the average

portfolio return. The number of assets is fixed to N = 16.

values of optimal proportions. On the other hand the num-
ber of possible decisions decreases for increasing value
of the fixed return R under which minimization is per-
formed. We argue this fixing N = 16 and calculating the
number of risk local minima varying the return R in the
range [0, 0.003]. In Figure 4 we plot the number of so-
lutions of equation (17) corresponding to each R value.
We see that the local risk minimums decrease for increas-
ing value of the return, becoming zero at R ∼ 0.0026.
Above this threshold we do not find from equation (17)
any portfolios satisfying both the budget and the return
constraints. One should look for risk minima on the border
of the manifold where Lagrange optimization is performed.
We did not investigate this point further.

0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019
 σP
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0.001

0.002

0.003

R
P

Fig. 5. Efficient frontiers for the portfolio consisting of 16 as-
sets. The continuous line is the “best-efficient” frontier corre-
sponding to the lowest value between all the risk local minima.
The dotted line shows the “average-efficient” frontier, i.e. it
corresponds to the average value of the risk between all the risk
local minima. The dashed line is the “worst-efficient” frontier,
constructed by using the higher values of the risk local minima
for each fixed return.

4.4 The efficient frontier

Here we use the data concerning the 16-stocks in order to
compute the efficient frontier and two more related curves.
More precisely, we first allow the averaged return to range
from 0 to 0.003 in 100 constant steps and for each value of
the return we calculated the proportions p corresponding
to the risk local minima. Then, among them we selected
the one associated to the risk global minimum and the
one associated to the worst choice, namely the local min-
imum corresponding to the portfolio at the very right tail
of Figure 1. Moreover, for a given fixed return, we also
calculate the averaged risk σAVE . Namely, if n is the total
number of local minima for a fixed return R and σ(j) are
the associated risks (j = 1, . . . , n), we define

σAVE =
1
n

n∑
j=1

σ(j).

By varying the return R, we use this data to reproduce a
kind of averaged efficient frontier, which is shown in Fig-
ure 5, together with the other two. We checked that, as one
could expect, the proportion of the investment associated
to the smallest and greatest local minima are completely
different. Furthermore also the portfolios corresponding to
risk value around the average risk σAVE are very different,
yielding many different equivalent investment strategies.
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5 A few remarks on the variances/
covariances matrix

A few words of comment about the correlation matrix
are in place. The computation of matrix C of variances/
covariances between return variations of different assets is
a key issue in the theoretical solution of the portfolio opti-
mization problem. The study of these correlation matrices
is a crucial problem in financial theory, both for develop-
ments of Markowitz’s theory of optimal portfolios, and for
problems (more recently introduced) of risk management,
related to the so-called value at risk models. For covari-
ance matrices used in value at risk models, the discussion
is open to an almost continuous flow of new experiments,
with an empirical evaluation of the obtained results, based
on a single case (for instance see [22]).

In reference [13] a random matrix approach is proposed
by Gallucio et al. as an alternative to well-established in-
dex models, originally presented by Markowitz himself and
developed by Sharpe [5]. These authors assume the ma-
trix C of variance/covariance as random; in particular,
from an historical analysis on asset prizes variations in
various Stock Markets, they argue that the correlation
matrix can be well approximated by a matrix which is
a generic realization of the so-called Exponential Orthog-
onal Ensemble. In this way they can exploit a consolidated
approach based on random matrix theory [23] and use self-
averaging property to prove analytically the exponential
increase of risk local minima. Assuming the matrix C as
random is quite reasonable in terms of financial theory:
prices/returns movements are in any case random, since
they can be read as realization of a stochastic process,
generated by market fluctuations. The analysis has suc-
cessively been enforced in a series of papers [24–27] by
examining the eigenvalues and eigenvectors distribution
of the matrix itself. The main aim here is, to separate
the randomness contained in the data from the real mar-
ket information. Let us consider a portfolio of N assets:
the correlation matrix contains N(N −1)/2 entries, which
must be computed from N time-series of length T . If T
is small compared to N , one would expect that the de-
termination of the covariance is most likely to be noisy,
and therefore the empirical correlation matrix is to a large
extent random; this implies that the structure of the ma-
trix is dominated by measurement noise and real infor-
mation are somewhat hidden in the data. A deep analysis
of eigenvalues (and corresponding eigenvectors) performed
in references [24,25] sheds relevant light on the statistical
properties of empirical correlation matrices. In the case
of the S & P500, less than 6% of the eigenvectors, which
are responsible for 26% of the total volatility, appear to
carry information, and this is a surprising result. From this
point of view, it should be stressed that Markovitz’s port-
folio scheme, based on a purely historical determination
of the correlation matrix, proves particularly weak, since
the elements of the matrix itself are dominated by noise.
Notwithstanding, simulations experiments with random
matrices [28] show that, in the context of the classical
portfolio problem (minimizing the portfolio variance un-
der linear constraints) noise has relatively little effect. To

leading order the solutions are determined by the stable,
large eigenvalues, and the displacement of the solution due
to noise is rather small. The picture is completely differ-
ent, however, if we attempt to minimize the variance under
non-linear constraint, like those we have in the problem
of short-selling with margin account. In this problem the
presence of noise in the correlation matrix leads to se-
rious instability and a high degree of degeneracy of the
solutions.

6 Conclusions

In this paper we have presented a model of portfolio op-
timization in the general case of futures markets. That is
allowing for long buying/short selling of assets with a fixed
margin requirement, and assuming a relatively high num-
ber of assets. In this perspective, this model generalizes
some relevant results originally obtained by Lintner. The
introduction of a nonlinear constraint in the Lagrangian
function makes the optimization procedure to find the so-
lution very difficult. Firstly, it is not possible to find a
unique efficiency frontier because of the presence in the
solution equation of a vector composed of a sequence of
±1 (corresponding to buying or selling the single asset),
whose order is undefined. The consequence is that we have
a multiple equilibrium solution characterized by many lo-
cal minima. The number of these minima is exponentially
increasing function in the number of assets, like the num-
ber of metastable states in spin glasses. We have illus-
trated the analogies between the two models. In front of
the problem of having many efficiency frontiers, all cor-
responding to a (local) minimum risk but not equivalent
among them, we have implemented a successful numeri-
cal procedure to search for the minimum of all minima, in
such a way to find a sort of super-efficiency frontier, that
will allow to get the best portfolio in terms of relationship
between risk and return. We applied our model to a con-
crete portfolio, formed by 16 assets chosen among the most
traded ones at Nasdaq. We went through the whole two-
step procedure, obtaining significant results, which may
suggest further efforts of developing the model presented.

The authors would like to thank J.-P. Bouchaud, Raffaella
Burioni, Sandro Graffi, Mario Menegatti and Paola Modesti
for helpful comments and suggestions.
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